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Feedback Linearization vs. Adaptive Sliding Mode Control for a  
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Abstract: This paper presents two types of nonlinear controllers for an autonomous quadrotor 

helicopter. One type, a feedback linearization controller involves high-order derivative terms and turns 

out to be quite sensitive to sensor noise as well as modeling uncertainty. The second type involves a 

new approach to an adaptive sliding mode controller using input augmentation in order to account for 

the underactuated property of the helicopter, sensor noise, and uncertainty without using control inputs 

of large magnitude. The sliding mode controller performs very well under noisy conditions, and 

adaptation can effectively estimate uncertainty such as ground effects. 
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1. INTRODUCTION 

 

Unmanned aerial vehicles (UAVs) are being used 

more often for military and civilian purposes such as 

traffic monitoring, patrolling for forest fires, surveillance, 

and rescue, in which risks to pilots are often high. 

Rotorcraft have an evident advantage over fixed-wing 

aircraft for various applications because of their vertical 

landing/take-off capability and payload. Among the 

rotorcraft, quadrotor helicopters can usually afford a 

larger payload than conventional helicopters due to four 

rotors as shown in Fig. 1. Moreover, small quadrotor 

helicopters possess a great maneuverability and are 

potentially simpler to manufacture. For these advantages, 

quadrotor helicopters have received much interest in 

UAV research.  

The quadrotor we consider is an underactuated system 

with six outputs and four inputs, and the states are highly 

coupled. To deal with this system, many modeling 

approaches have been presented [1,2] and various control 

methods proposed [3-17]. First of all, several backstepp-

ing controllers have been developed. E. Altug et al. 

presented a backstepping controller using single- [3] and 

dual-camera [4] visual feedback. Madani et al. studied a 

full-state backstepping technique based on the Lyapunov 

stability theory and backstepping sliding mode control 

[5,6]. Yet another backstepping control method was 

proposed by P. Castillo et al. They used this controller 

with a saturation function and it performed well under 

perturbation [7]. Also, N. Metni et al. used backstepping 

techniques to derive an adaptive nonlinear tracking 

control law for a quadrotor system [8]. 

A feedback linearization controller was implemented 

by Altug et al. [3]. A PD controller was designed to y  

and yaw control and the feedback linearization controller 

was implemented to x  and z  control. A. Benallegue 

et. al. presented feedback linearization with a high-order 

sliding mode observer for a quadrotor and in simulation 

it was quite robust against wind disturbance and noise [9].  

A quaternion-based feedback controller for attitude 

stabilization was shown in [10]. With compensation of 

the Coriolis and gyroscopic torques, the controller 

guaranteed exponential stability while a classical PD 

controller without compensation of the Coriolis and 

gyroscopic torques could guarantee only asymptotic 

stability. In [11], a PID controller and a LQ controller 

were proposed to stabilize the attitude. The PID 

controller showed the ability to control the attitude in the 

presence of minor perturbation and the LQ controller 

© ICROS, KIEE and Springer 2009 

__________  

 Manuscript received January 17, 2008; revised October 9,
2008; accepted December 31, 2008. Recommended by Editorial 
Board member Hyo-Choong Bang under the direction of Editor 
Hyun Seok Yang. This work was supported by the Korea Research
Foundation Grant (MOEHRD) KRF-2005-204-D00002, the Korea
Science and Engineering Foundation(KOSEF) grant funded by the 
Korea government(MOST) R0A-2007-000-10017-0 and Engi-
neering Research Institute at Seoul National University.  
 Daewon Lee and H. Jin Kim are with School of Mechanical
and Aerospace Engineering and Institute of Advanced Aerospace 
Technology, Seoul National University, Seoul 151-742, Korea (e-
mails: {dwsh001, hjinkim}@snu.ac.kr). 
 Shankar Sastry is with Electrical Engineering & Computer
Sciences, University of California, Berkeley, CA 94720, USA (e-
mail: sastry@eecs.berkeley.edu). 
* Corresponding author. 

 

 

Fig. 1. Quadrotor helicopter on a landing pad under 

consideration. 
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provided average results, due to model imperfections. In 

[12], Erginer et al. presented a modeling of a quadrotor 

helicopter system. They also proposed a PD controller to 

control x- and y-axis movements and altitude by 

actuating pitch, roll, and thrusts commands, respectively, 

using visual feedback.  

There are also robust controllers designed for 

quadrotor systems. A sliding mode disturbance observer 

was presented in [13] to design a robust flight controller 

for a quadrotor vehicle. This controller allowed continu-

ous control robust to external disturbance, model 

uncertainties and actuator failure. Robust adaptive-fuzzy 

control was applied in [14]. This controller showed a 

good performance against sinusoidal wind disturbance. A. 

Mokhtari presented robust feedback linearization with a 

linear generalized H-∞ controller and the results showed 

that the overall system was robust to uncertainties in 

system parameters and disturbances when weighting 

functions are chosen properly [15]. In [16], a robust 

dynamic feedback controller of Euler angles is proposed 

using estimates of wind parameters. This controller 

performed well under wind perturbation and 

uncertainties on inertia coefficients.  

In [17], a sliding mode controller was suggested. Due 

to the underactuated property of a quadrotor helicopter, 

they divided a quadrotor system into two subsystems: a 

fully-actuated subsystem and an underactuated subsys-

tem. Two separate controllers were designed for these 

subsystems. A PID controller was applied to the fully 

actuated subsystem and a sliding mode controller was 

designed for the underactuated subsystem. Because of 

the advantage of a sliding mode controller, namely 

insensitivity to uncertainties, it robustly stabilized the 

overall system under parametric uncertainties.  

This study presents two nonlinear controllers for a 

quadrotor helicopter system. The first one operates on a 

feedback linearization (FL) method for an integrated x-y-

z control. Feedback linearization controllers can be 

directly applied to nonlinear dynamics without linear 

approximations. We simplify the equation of system 

dynamics for the FL controller in order to avoid complex 

calculations involving repeated differentiation. Although 

this controller is simple to implement, model uncertainty 

can cause performance degradation or instability of the 

closed-loop system, because it uses inverse system 

dynamics as part of the control input to cancel nonlinear 

terms. In addition, because of the high-order derivative 

terms arising from the differentiation of dynamic 

equations, the FL controller is quite sensitive to external 

disturbance or sensor noise. To manage the robustness 

issue, we present a new approach for an adaptive sliding 

mode method for controlling a quadrotor helicopter using 

input augmentation under uncertainty and sensor noise. 

Sliding mode controllers are robust to bounded 

uncertainties such as modeling errors, sensor noise and 

external disturbances. However, in order to compensate 

for these uncertainties, sliding mode controllers tend to 

cause large input gains, which could be a serious 

limitation in power-limited systems such as small 

quadrotor helicopters. Adaptive sliding mode controllers 

can overcome the drawbacks of sliding mode controllers 

by adapting the estimates of uncertainty estimates, 

resulting in smaller input gains. In designing an adaptive 

sliding mode controller, we define slack variables to 

overcome a property of the quadrotor system that is 

underactuated. Furthermore, this controller is applied 

under uncertain conditions involving sensor noise and 

ground effects. Adaptation rules effectively deal with 

uncertainties without having to use control inputs of 

large magnitude.  

This paper is structured as follows: In Section 2, an 

operating principle of a quadrotor and its dynamic 

equations are presented. In Section 3, a feedback 

linearization controller is described. Section 4 presents 

an adaptive sliding mode controller and error analysis for 

the controller. Simulation results are given in Section 5, 

and Section 6 contains concluding remarks. 

 

2. QUADROTOR HELICOPTER MODEL 

 

Quadrotor helicopters we consider have four fixed-

pitch-angle blades whereas classic helicopters have 

variable-pitch-angle blades. The control of a quadrotor 

helicopter is performed by varying the speed of each 

rotor.  

A concept of the quadrotor helicopter is shown in Fig. 

2. Each rotor produces a lift force and moment. The two 

pairs of rotors, i.e., rotors (1,3) and rotors (2,4), rotate in 

opposite directions so as to cancel the moment produced 

by the other pair. To make a roll angle (φ ), along the 

x -axis of the body frame, one can increase the angular 

velocity of rotor (2) and decrease the angular velocity of 

rotor (4) while keeping the whole thrust constant. 

Likewise, the angular velocity of rotor (3) is increased 

and the angular velocity of rotor (1) is decreased to 

produce a pitch angle (θ ), along the y -axis of the body 

frame. In order to perform yawing motion (ψ ), along the 

z -axis of the body frame, the speed of rotors (1,3) are 

increased and the speed of rotors (2,4) are decreased.  

The quadrotor helicopter is assumed to be symmetric 

with respect to the x and y axes so that the center of 

gravity is located at the center of the quadrotor. Each 

rotor is located at the end of bars, whose length from the 

center to rotor is l. The rotors generate thrust force 

 

Fig. 2. A quadrotor helicopter configuration with roll-

pitch-yaw Euler angles [ ].φ θ ψ, ,  
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( 1 2 3 4)= , , ,
i

F i  which are perpendicular to x - y  plane 

as shown in Fig. 2. 
i
J  is the moment of inertia with 

respect to each axis and ρ  is the force-to-moment 

scaling factor. Then the equations of motion of the 

quadrotor without consideration of air drag can be 

presented as below. 

4

3 3

1

1
( ) ( ( ) ) ,
=

 
  = + − 
  

∑
��� ���

��

��

��

i r

i

x

y F Re g z g e
m

z

 (1) 

2 4 1

1 3 2

1 2 3 4 3

( ) ,

( ) ,

( ) .
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l F F J

F F F F J

φ

θ

ψ ρ

= − /

= − + /

= − + − /

��

��
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 (2) 

[ ], ,x y z  represent the position of the quadrotor in the 

inertial frame, and the attitude state variables in the body 

frame [ ]φ θ ψ, ,  represent roll, pitch and yaw angles, 

respectively. 
3

[0 0 1] ,T
e = , ,

���

 and R  is the coordinate 

transformation matrix from the body frame to the inertial 

frame, 

,

c c s s c c s c s c s s

R c s s s s c c c s s s c

s s c c c

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ ψ φ θ ψ φ ψ φ θ ψ φ ψ

θ φ θ φ θ

− + 
 = + − 
 − 

 

where c and s denote cosine and sine functions, 

respectively, and g denotes gravity. 

The term ( )
r

g z  represents the ground effect during 

landing. As shown in (3), we assumed that the ground 

effect affects the UAV when the UAV is below the 

certain altitude, 
0
z  [19]. 

02 2

0

0
( ) ( )( )

0 else

cg cgr

A A
z z

z z z zg z


− < ≤

+ += 



 (3) 

where A  is the ground effect constant and 
cg
z  is the z 

component of the center of gravity. Because it is very 

difficult to derive the exact equations for the ground 

effect, the term ( )
r

g z  is considered an unknown 

perturbation in designing a controller, which requires 

compensation or adaptation. 

In order to simplify (1) and (2), input terms are 

defined as (4). u1 is the normalized total lift force, and u2, 

u3 and u4 correspond to the control inputs of roll, pitch 

and yaw moments, respectively. 

1 1 2 3 4

2 2 4 1

3 1 3 2

4 1 2 3 4 3

( ) ,

( ) ,

( ) ,

( ) .

u F F F F m

u F F J

u F F J

u F F F F Jρ

= + + + /

= − /

= − + /

= − + − /

 (4) 

Then the equations of motion can be represented as (5)-

(10): 

1
(cos sin cos sin sin ),x u φ θ ψ φ ψ= +��  (5) 

1
(cos sin sin sin cos ),y u φ θ ψ φ ψ= −��  (6) 

1
(cos cos ) ( ),

r
z u g g zφ θ= − +��  (7) 

2
,u lφ =

��  (8) 

3
,u lθ =

��  (9) 

4
ψ = ,�� u  (10) 

or, equivalently, using [ ]φ θ ψ= , , , , ,
Tx y zx  and =u  

1 2 3 4
[ ] ,Tu u u u, , ,  in the vector form as (11). 
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3. FEEDBACK LINEARIZATION CONTROL 

 

A feedback linearization method for x-y-z control of a 

quadrotor helicopter system is presented in this section. 

The feedback linearization transforms a nonlinear system 

into an equivalent linear system so that we can handle 

the system easily. 

 

3.1. The feedback linearization structure 

Feedback linearization (FL), one of the most popular 

control methods for nonlinear systems, is employed in 

this section. However the quadrotor under consideration 

is an underactuated system, and g(x) in (11) is not 

invertible. So the nonlinear terms in (11) cannot be 

directly canceled by inverting g(x). To make this system 

feedback linearizable, one may consider choosing 

φ θ, ,z  and ψ  as output variables. Then, zero 

dynamics of this system can be written as (12) and (13):  

cos sin cos sin sin

cos cos cos cos

sin
tan cos tan tan ,
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As the full analysis of the exact zero dynamics is rather 

complex, the above approximations are obtained by 

setting 1ψ| |� , and the approximated zero dynamics 

are unstable. This approximation can be supported by the 

small values of ψ| |  in the simulation results [3].  

On the other hand, if , ,x y z  and ψ  are chosen as 

output variables, it can be easily seen that 
2

u  and 
3
u  

do not appear in (5), (6), (7), and (10), so we need to 

differentiate these equations until the input terms appear. 

Because of the repeated differentiation, the FL controller 

design involves complex computation and several 

derivative terms that are quite sensitive to noise. In order 

to reduce the number of complicated derivative terms 

involved in further differentiations of x  and ,y  we 

first approximate (5)-(10), into (14)-(19) using the small-

angle assumption while ignoring the ground effect.  

1
sin ,x u θ=��  (14) 

1
sin ,y u φ= −��  (15) 

1
cos cos ,z u gφ θ= −��  (16) 

2
,u lφ =

��  (17) 

3
,u lθ =

��  (18) 

4
.uψ =��  (19) 

The behavior of the remaining state variables φ  and 

θ  after the x - y - z  and ψ  control depend only on 

the control inputs 
2

u  and 
3
,u  and their responses will 

be checked by simulations.  

 

3.2. x - y - z  and ψ  controller design 

To obtain the input of the x - y - z  controller, we 

differentiate (14), (15), and (16) until the input terms 

appear. The input terms, 
2
( / )φ= ��u l  and 

3
( / ),u lθ= ��  

appear in the second derivatives of (14), (15), and (16), 

which are (20), (21), and (22), respectively.  
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We define an extended system which includes an 

additional input 1��u , then the control inputs generated by 

the x - y - z  controller are 1 2 3
[ ] .

T
u uu , ,��  Equations 

(20)-(22) are rewritten in the matrix form shown in (23), 

and the control inputs are defined as (24) using pseudo 

inputs 
1 2 3

[ ].v v v, ,  

Setting the pseudo input terms as 

(4) (3)
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simplified system. And the ψ -controller is a PD 
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controller: 

4 1 2
( ) ( )

ψ ψ
ψ ψ ψψ ψ= + − + − ,��� �

dd d
u k k  (25) 

where 
1ψ

k  and 
2ψ

k  are derivative and proportional 

gains, respectively. 

 

4. SLIDING MODE CONTROL 

 

This section describes an adaptive sliding mode 

controller. We define a suitable sliding surface and 

adaptation rules so that a trajectory of the system follows 

desired references under ground effects and noisy 

sensors [18]. 

 

4.1. Adaptive sliding mode control with augmented 

inputs 

Since g(x) is a 6-by-4 matrix, g(x) of (11) is not 

invertible as mentioned previously. By augmenting slack 

variables 
s

g  to ( )g x  and 
s

u  to u  in order to form 

a square system, we can rewrite the system dynamics of 

(11) as  

( ) ( ) ( )ν= + − + ,��
r

f G U fx x x x  (26) 

where [ ( ) ],
s

G g= ,x g  [ ] ,
T T T

s
U = ,u u  and .

s s
ν = g u  

s
g  is set to be constant and defined in advance to make 

( )G x  invertible, and 
5 6

[ ]= ,
T

s
u uu  are the slack 

variables. If we set  

1 0 0 0 0 0

0 1 0 0 0 0

 
= , 
 

T

s
g  (27) 

then [ ]5 6
,0 0 0 0

T

s s u uν = =g u  so we need to 

estimate the slack variables 
5
u  and 

6
.u  In this case, 
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1
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0 0 0 1 0 0

0 0 0 0 1 0
( ) ,
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1 0 0 0 0 0
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−

 
 / 
 /

≈  
 
 
 
  

l

l
G x  

when the small-angle assumption holds.  

Let = − de x x  denote the error vector with respect to 

the vector of desired state variables [d d d dx y z= , , ,x  

] ,
T

d d dφ θ ψ, ,  and define the sliding surface as  

1 2 3 4 5 6
[ ] ,

T
S s s s s s s K= , , , , , = +e e�  (28) 

where 
1 6

[ ]= , ,�K diag k k  is a diagonal matrix with 

positive entries, so that the trajectory of the system could 

follow the desired references on the sliding surface S = 0.  

In order to cancel nonlinear terms in (26), we need to 

define the estimated values of ν  and ( ),
r
f x  which we 

denote as ν̂  and ˆ ( ),
r

f x  respectively. Let us define 

ˆν ν ν:= −�  and ˆ( ) ( ) ( ),
rr r

ff f:= −x x x�  and let the 

Lyapunov function be  

1 1 1
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2 2 2
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T TT

r r
L S S f fx x  (29) 

where Γ  and Ω  are positive semidefinite weighting 

matrices.  

Let us assume that ν  and ( )
r
f x  change slowly 

enough, which leads to ˆν ν≈ −
���  and ˆ( ) ( ).

r r
f f≈ −x x

���  

Then the first-order derivative of the Lyapunov function 

can be derived as  
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To make the first-order derivative of Lyapunov function 

negative definite, the augmented input U is selected as 

(31): 

1
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Then (30) becomes 
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where 
1 2 3 4 5 6

[ ]= , , , , , T
C c c c c c c  is an input gain vector. 

So we can update ν̂�  and ˆ ( )�

r
f x  as 

1 2
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x yx yk e k ee e  (33) 
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And with positive entries of C, we can make (30) as  

0= − | |< ,� T
L C S  

which means S→0.  

In order to check the steady state of the estimated 

variables under this adaptive sliding mode controller, we 

combine (26) and (31) with 0,S ≈ 0,S ≈
�  which yields  
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f fν ν− ≈ −  (35) 

55

66

0ˆ

0ˆ

ˆ0
i.e., .

0 0

0 0

0 0

r r

u u

u u

g g

−   
   −   
   −

=   
   
   
   
      

 



Daewon Lee, H. Jin Kim, and Shankar Sastry 

 

 

424 

Thus, the estimations 5 6,ˆ ˆu u,  and ˆ
r

g  will converge 

to its true values in steady state. 

In (31), the dominant terms for 
1 2 3
u u u, ,  and 

4
u  

are [ ],
z z
ee ,�  [ ],eeφ φ,�  [ ]θ θ,� ee  and [ ],eeψ ψ

,�  and we 

cannot control the x  and y  states directly from the 

inputs. So we define the desired values for φ  and θ  

as (36) and (37) to control the x  and y  positions. 

,yd yk ee φφ = +�  (36) 

.xd xk ee θθ = +�  (37) 

Here φk  and θk  are proportional gains. 

 

4.2. Advantage of adaptive sliding mode controller: 

input magnitude point of view 

We can determine the value of C  to satisfy (38) from 

the combination of (30), (33), and (34). 

1 1

2 2

3 3

4 4

5 5

6 6

0.
T

C sign S

C sign S

C sign S
L S

C sign S

C sign S

C sign S

− | | 
 − | | 
 − | |

= < 
− | | 
 − | |
 
− | |  

�  (38) 

If we use the standard sliding mode control rather than 

performing the adaptation for the slack variable ν  and 

the ground effect rf  as in (33)-(34), the uncertain terms 

5
,u  

6
u  and 

r
g  will be contained in the first, second 

and third rows, respectively, of the matrix in (38) as 

below: 

5 1 1

6 2 2

3 3

4 4

5 5

6 6

0.
rT

non adaptive

u C sign S

u C sign S

g C sign S
SL

C sign S

C sign S

C sign S

−

− − | | 
 − − | | 
 − | |

= < 
− | | 

 − | |
 

− | |  

�  (39) 

Thus, in the non-adaptive case, it would be necessary to 

use the input gains, 
1
,C  

2
C  and 

3
,C  large enough to 

compensate
5 6
, and| | | | | |ru u g  to make 

−

�
non adaptiveL  

0.<  One can notice from the comparison of (38) and 

(39) that the adaptive sliding mode controller requires 

smaller input magnitude, which is a clear advantage in 

terms of reduced chattering and power efficiency. 

 

4.3. Sensor noise analysis in adaptive sliding mode 

control 

In our experimental setup, we use a vision sensor to 

estimate the position and attitude information, which 

causes calibration error as written in (40). 

[ ]
T

x y zE φ θ ψε ε ε ε ε ε=  (40) 

So the measured state variables X̂  are given as (41). 

ˆ
= +X X E  (41) 

Since the calibration error terms affect xe  and ,
y
e  

φd  and θd  in (36) and (37) involves the calibration 

error terms. So the desired state vector includes those 

error terms as shown in (42). Now let η∗  denote error 

terms included in ∗ . Then the desired state has error 

terms as shown in (42), and for example, η
dX

 can be 

defined as (43). 

)
ˆ ,

( ( ))

( ( ))

d

d

d

d
y y dd

x d x d

d

x

y

z
X y k y yy

x k x xx

φ

θ

εε

εε

ψ

 
 
 
 
 
 
 
 
 
 
 
 
 

=
+ − + + −

+ − + + −

� ��

� � �

 (42) 

0

0

0
.

0

X d
y y

x x

k

k

φ

θ

η
εε

εε

 
 
 
 

=  
+ 

 +
 
  

�

�

 (43) 

Therefore, η ��
dX

 and η �e  can be derived as 

(3)

(3)

0

0

0

, .

0

d
e

y y

xx

E
k

k

φ

θ

η η
ε ε

ε ε

 
 
 
 
 = =
 +
 
 +
 
 

X�� �
�

��

��

 (44) 

Recalling (31) about the input ,U  the error terms 

included in U  can be expressed as the following: 

1

2

3
1

(3)
4

(3)
5

6

( ) .

x

y

z

U
y y

xx

k

k

k

G
k k

k k

k

φφ

θθ

ψ

ε

ε

ε

η
ε ε ε

ε ε ε

ε

−

− 
 − 
 −
 =
 + −
 
 + −
 

−  

X

�

�

�

�� �

�� �

�

 

We used a saturation function and a first order filter to 

limit the jump in U  caused by the error terms of 

(3)(3)
.x y z x y yxφ θ ψ εεε ε ε ε ε ε ε ε

 
  
� � � � � � �� ��  
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5. SIMULATION RESULTS 

 

The proposed FL controller and adaptive sliding mode 

controller for the quadrotor helicopter are tested here in 

simulations. The ground effect and sensor noise are 

omitted in the first simulation using the FL controller. 

Two different simulations were performed for the 

adaptive sliding mode controller: 1) excluding sensor 

noise and 2) including sensor noise, while the ground 

effect was included in both simulations. In order to 

reduce the chattering caused by ( ),sign S  S  was used 

in simulation instead of ( ).sign S  Parameter settings for 

those simulations are: 

[ ]

[ ]

[ ]

2

1 2

2

3

2

0

2 Ns rad,

3 Ns rad,

2 5 kg,

1m,

9 81m ,

0 4668,

2 m,

1 1 0 0 0 0 ,

0 0 1 0 0 0 ,

[5 5 5 1 1 1] ,

1 1 0 7 5 5 10 ,

5,

(0) 10 m (0) 10 m (0) 20 m,

(0) 30 deg (0) 30 deg (0) 30 deg.

T

J J

J

m

l

g s

A

z

diag

diag

C

K diag

k k

x y z

φ θ

φ θ ψ

= = /

= /

= .

=

= . /

= .

=

Γ =

Ω =

= , , , , ,

= .

= =

= , = , =

= , = , =

 (45) 

A mission of the UAV is to land at origin (0,0,0) from 

the starting point (10,10,20) via waypoint (20,-10,10). To 

land safely, extra care has been taken so that the altitude 

profile does not contain any overshoot. 

Simulation results of the FL controller without sensor 

noise are presented first. The gains of FL controller, 

1 4 1 4
[ ] [ ] ,

T T
x x y yk k k k, , , , ,� �  and 

1 4
[ ], ,�

T

z z
k k  are 

obtained from the LQR (Linear quadratic regulator) 

method: 

0
( ) ( ) ,T TJ u x Qx u Ru dt

∞

= +∫  (46) 

where [1 10 5 1],Q diag= , , ,  0 01,R = .  which yields 

11 1

4 4 4

10 00

42 49
.

40 27

13 43

yx z

x y z

kk k

k k k

    
    
    
    
    
      

. 
 . = = =
 .
 

. 

� � �  

Fig. 3 shows the resulting three-dimensional trajectory 

of the UAV without the ground effect term and sensor 

noise, and Fig. 4 shows the six state variables of the 

helicopter while it moves from (10,10,20) to (0,0,0) via 

 

Fig. 3. Trajectory of UAV in 3-D axes with FL 

controller without uncertainty and sensor noise. 

 

  
  (a)   (b) 

  
  (c)   (d) 

  
  (e)   (f) 

Fig. 4. FL controller results without uncertainty and 

sensor noise. (a),(b),(c): , ,x y z  positions. (d), 

(e),(f): roll, pitch, yaw angles (solid: state 

variables of UAV, dotted: desired values). 

 

  

   (a)    (b) 

  

   (c)    (d) 

Fig. 5. Inputs generated by the FL controller without 

uncertainty and sensor noise. 
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Fig. 9. Trajectory of UAV in 3-D axes with the adaptive 

sliding mode controller with uncertainty and 
sensor noise. 

 
Fig. 10. Positions and attitudes using the adaptive 

sliding mode controller with uncertainty and 
sensor noise. 

 

Fig. 11. Inputs generated by the adaptive sliding mode 
controller with uncertainty and sensor noise. 

 
Fig. 6. Trajectory of UAV in 3-D axes with the adaptive

sliding mode controller with uncertainty but
without sensor noise. 

 
Fig. 7. Positions and attitudes using the adaptive sliding

mode controller with uncertainty but without
sensor noise. 

 

 
Fig. 8. Inputs generated by the adaptive sliding mode

controller with uncertainty but without sensor
noise. 
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(20,-10,10) with given initial pitch, roll and yaw angles. 

The control inputs are shown in Fig. 5. Since we chose 

the output of the FL method to be , ,x y z  and ,ψ  the 

remaining variables φ  and θ  can be considered the 

internal dynamics under the FL controller, and Fig. 4 

shows that the internal dynamics of FL controller are 

stable. 

The results of the adaptive sliding mode controller 

without sensor noise are shown in Figs. 6-8. As shown in 

the φ  and θ  plots in Fig. 7, chattering occurs even 

when sensor noise does not exist, this is because we use 

the 
x
e  and 

y
e  to compute the φd  and θd  as written 

in (36) and (37). 

As we can see in Figs. 3-5, the feedback-linearization 

controller yields a satisfactory result when there is no 

noise. Although the sliding mode controller also 

performs well, the feedback linearization uses more 

efficient inputs without chattering, when compared with 

the sliding mode controller (Fig. 4 vs. Fig. 7, and Fig. 5 

vs. Fig. 8). 

However, with uncertainty and sensor noise, the FL 

controller does not guarantee the stability, and the 

resulting trajectory and state variables diverge. This is 

because the FL controller requires higher-order 

derivative terms of states to compute the inputs in our 

quadrotor example and relies on exact information on the 

dynamic equations. 

Results under the adaptive sliding mode controller 

considering uncertainty and sensor noise are shown in 

Figs. 9 -11. Sensor noise is applied to six state variables. 

Mean and standard deviation of each noise are 0 m  and 

0 05 m.  for ,x y  and ,z  and 0 01 rad.  for φ θ,  and 

.ψ  Although there is chattering around the desired 

trajectory, the adaptive sliding mode controller robustly 

completes the mission under uncertainty and sensor noise 

as we can see in Figs. 9 and 10. And as shown in Fig. 11, 

chattering in the input channels suppresses the sensor 

noise. 

As we can see in the Figs. 12 and 13, the adaptive 

sliding mode controller achieved good estimates of the 

auxiliary inputs and the ground effect both with and 

without the sensor noise, so that the control of the UAV 

could be done more precisely during landing. 

 

6. CONCLUSIONS 

 

In this paper, two types of nonlinear controllers were 

presented for a quadrotor helicopter. A feedback 

linearization (FL) controller was derived in a 

conventional way, with simplified dynamics to reduce 

the number of higher-order derivative terms involved in 

the design process. This controller uses control inputs 

that are very sensitive to sensor noise, because up to the 

third-order derivatives of state variables are included in 

the inputs. The FL controller is not robust to uncertainty 

as well as sensor noise. As an alternative, we introduced 

a new approach for the adaptive sliding mode controller 

using input augmentation to overcome the underactuated 

properties of the quadrotor helicopter. The inputs of the 

proposed sliding mode controller contain only the first 

derivatives of state variables and second derivatives of 

desired states. With a noise filter and saturation function, 

this controller performs well under sensor noise. 

Furthermore, the uncertainty caused by the ground effect 

can be compensated with a proper adaptation rule under 

the adaptive sliding mode control.  
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